United States Patent

US009176784B2

(12) 10y Patent No.: US 9,176,784 B2
Kakadia et al. 45) Date of Patent: Nov. 3, 2015
(54) LOAD BALANCING 7,769,886 B2* 82010 Nasehetal. ..o 709/238
8,170,940 B2* 52012 Tullyetal. 705/36 R
. 8,180,896 B2* 5/2012 Sakataetal. 709/226
(75) Inventors: Deepak Kakadia, Union City, CA (US); 8266319 B2* 0/2012 Zisapel et al. ... 200238
Ken Duda, Menlo Park, CA (US) 2003/0061304 Al* 3/2003 Tenereillo et al. 709/217
2006/0013147 Al* 1/2006 Terpstraetal. 370/252
(73) Assignee: Verizon Patent and Licensing Inc., %882;8};%%2 ﬁi: 55;;3882 I%lrklill o ;%gg
. . aseh et al.
Basking Ridge, NJ (US) 2007/0036242 AL* 2/2007 Gotou 375/318
. 2007/0136242 Al* 6/2007 Auvenshineetal. 707/3
(*) Notice: Subject to any disclaimer, the term of this 2009/0276842 A1* 11/2009 Yevmenkin et al. 726/13
patent is extended or adjusted under 35 2010/0036903 Al* 2/2010 Ahmadetal. 709/202
U.S.C. 154(b) by 1556 days. 2010/0036954 Al* 22010 Sakataetal. 709/226
2011/0145390 Al* 6/2011 Kakadiaetal. 709/224
R 2011/0314119 Al 12/2011 Kakadia et al.
(21) Appl. No.: 12/636,132 2012/0198045 Al* 82012 Sakatactal. 709/223
(22) Filed Dec. 11. 2009 2012/0215915 Al* 8/2012 Sakataetal. 709/224
iled: ec. 11,
FOREIGN PATENT DOCUMENTS
(65) Prior Publication Data
US 2011/0145390 A1~ Tun. 16, 2011 WO WO-2006/072114 6/2006
OTHER PUBLICATIONS
51) Imt.CL
b GO6F 15/173 (2006.01) Wol.lman.H Jegers The Mitre Corporation Ser.ver Loz.ld Be.llancing
GO6F 9/50 (2006.01) Registration Protocol W: “Server Load BalancingRegistration Pro-
HO4L 29/08 (2006.01) tocol; draft-v.volln.lan-slbrp-OO.b(t”, IETF Standard-Working-Draft,
(52) US.Cl Internet Engineering Task Force, IETF, CH, Nov. 1, 2003.
CPC GOG6F 9/505 (2013.01); HO4L 67/1002 * cited by examiner
(2013.01); HO4L 67/1029 (2013.01); HO4L
67/1034 (2013.01) Primary Examiner — Tammy Nguyen
(58) Field of Classification Search
USPC oo 709/227, 217, 202;370/252 (57) ABSTRACT
See application file for complete search history. A device may include a memory and logic. The logic may be
(56) Ref Cited configured to monitor a number of computer devices associ-
eferences Cite

U.S. PATENT DOCUMENTS

6,601,101 B1* 7/2003 Leeetal.ccceoennin. 709/227
6,665,702 Bl 12/2003 Zisapel et al.
6,788,692 Bl 9/2004 Borden et al.

6,826,613 B1* 11/2004 Wangetal.c.eecenenen 709/227
6,856,991 Bl1* 2/2005 Srivastavacccoeveenrrns 1/1
7,047,315 B1* 5/2006 Srivastava 709/238
7,088,718 B1* 8/2006 Srivastava 370/392

7,305,429 B2* 12/2007 Borellacccovevrevrnrennne. 709/203
7.490,164 B2* 2/2009 Srivastava 709/238
7,512,702 B1* 3/2009 Srivastava et al. . 709/238
7,650,427 B1* 1/2010 Liuetal.ccoceervvrnrnnnn. 709/238

100
™~ DNS
130

110

ROUTER
124

1
| [SERVER [SERVER SERVER| !
: 1521 | 1522 | "t | 152N :

ROUTER [\~ |
120 122
CLIENT
DEVICE

ated with a service, identify, based on the monitoring,
whether any of the computer devices is experiencing a prob-
lem or is unavailable, and store, in the memory, information
identifying each of the computer devices that is experiencing
aproblem or is unavailable. The logic may also be configured
to receive a client request for the service, the client request
being directed to a virtual Internet protocol (VIP) address
associated with the device. The logic may be further config-
ured to identify one of the computer devices to which the
request is to be forwarded, and forward the request to the
identified computer device.

20 Claims, 7 Drawing Sheets

DNS
132

ROUTER

NETWORK
170

ROUTER
126

LOAD BALANCER
140-2

f 160
SERVER
162-M

SERVER
162-1

SERVER
162-2

US 9,176,784 B2

Sheet 1 of 7

Nov. 3, 2015

U.S. Patent

| | w-ezol
W EELNER

¢c9l

L-291

[sEVY=ER R<ENYER

covlL

H3ONVIvE avOl

N-¢SL
d3AH3S

¢Sl

L-¢GlL

ISENYER REENUYER

L-0¥L
H3IONV1vE

avoi

9zL A
¥3LnoY ¥3LnoY
0LL
MYOMLIN
44 0zl
Y¥3Lnoy II\/\ NEITple}Y
zel
SNQ el
SNQ

oLl
30INA3d
IN3INO

V/ 00l

U.S. Patent Nov. 3, 2015 Sheet 2 of 7 US 9,176,784 B2

140

INPUT OUTPUT COMMUNICATION
DEVICE DEVICE INTERFACE
240 250 260
\\\-21o
PROCESSOR MEMORY
220 230

FIG. 2

U.S. Patent Nov. 3, 2015

LOAD BALANCING LOGIC
310

Sheet 3 of 7

US 9,176,784 B2

MONITORING LOGIC
330

FORWARDING LOGIC
320

EXCEPTION LIST
340

SESSION PERSISTENCE LOGIC
350

PERSISTENCE TABLE
352

FIG. 3

U.S. Patent Nov. 3, 2015 Sheet 4 of 7 US 9,176,784 B2

CONTROL LOGIC
410

ROUTER TABLE
430

ROUTING LOGIC
420

FIG. 4

U.S. Patent Nov. 3, 2015 Sheet 5 of 7 US 9,176,784 B2

CONFIGURE LOAD BALANCERS WITH SAME /510

VIRTUAL ADDRESS

520

ADVERTISE VIRTUAL ADDRESS ASSOCIATED |7
WITH SERVICE

‘ 530

ROUTERS RECEIVE ADVERTISED ADDRESS; e
STORE ADDRESS IN ROUTER TABLE

¢ 540

RECEIVE REQUEST FROM CLIENT; L~
ROUTE REQUEST TO LOAD BALANCER

¢ 550

SELECT APPROPRIATE SERVER

FIG. 5

U.S. Patent

100
\‘

CLIENT
DEVICE
110

1.1.1.1/32 via 192.468.1.2

1.1.1.1

LOAD BALANCER
140-1

Nov. 3, 2015 Sheet 6 of 7 US 9,176,784 B2
'/_ 430
NETWORK | NEXT HOP | METRIC
1.1.1.1/32 [192.168.1.1
1.1.1.1/32 | 172.1.1.1 2
ROUTER [~~~ | ROUTER
120 122
170
1.1.1.1/32 via 172.1.1.2
ROUTER ROUTER
124 . 126
1.1.1.1
LOAD BALANCER
140-2

FIG. 6

U.S. Patent Nov. 3, 2015 Sheet 7 of 7 US 9,176,784 B2

710
MONITOR SERVERS IN SERVER POOLS L~

v

DETERMINE WHETHER SERVER(S) SHOULD BE |~
ADDED TO EXCEPTION LIST

v

DETERMINE WHETHER TO REMOVE SERVER(S) /730
FROM EXCEPTION LIST

¢ 740

720

PERFORM HASH FUNCTION TO IDENTIFY A L
SERVER TO SERVICE A CLIENT REQUEST

760
e

FORWARD REQUEST

IDENTIFIED SERVER IN
EXCEPTION LIST?

IDENTIFY ANOTHER SERVER TO SERVICE
CLIENT REQUEST

FIG. 7

US 9,176,784 B2

1
LOAD BALANCING

BACKGROUND INFORMATION

Service providers often attempt to balance the processing
load associated with providing their services. One drawback
with conventional load balancing is that the load balancing is
typically performed across multiple layers and platforms. As
aresult, there are multiple levels of failure associated with the
load balancing.

For example, in conventional network architectures, a cli-
ent device may connect with a router to attempt to access a
service. The router may interact with one or more domain
name systems (DNSs) and global load balancing platforms to
identify an Internet protocol (IP) address associated with the
desired service. Once an IP address is identified, the router
may forward the request to a local load balancing platform
that will attempt to forward the request to an available server.
Such an approach has many drawbacks. For example, the
client may receive an initially valid IP address from a DNS
resolver, but accessing the desired service may fail at any
point in time thereafter. In such instances, the client will not
know whether there is an alternate IP address for the service.
Therefore, the client will try to connect to the IP address, wait
a period of time and retry to establish a connection one or
more times. During this period of time, the DNS entry in the
client may expire based on a time-to-live (T'TL) value and the
DNS server will have to be queried again for a new valid IP
address. Such processing consumes time and significant net-
work resources.

Another problem with conventional architectures is the
requirement for multiple layers of load balancers. For
example, conventional architectures include a global server
load balancing layer/platform, as well as a local server load
balancing layer/platform. Each load balancing layer/platform
contributes to packet latencies and adds devices to the service
provider’s facilities. These devices consume rack space,
power and cooling resources.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an exemplary network in which systems
and methods described herein may be implemented;

FIG. 2 illustrates an exemplary configuration of one or
more of the components of FIG. 1;

FIG. 3 illustrates an exemplary configuration of logic com-
ponents implemented in one of the load balancers of FIG. 1;

FIG. 4 illustrates an exemplary configuration of logic com-
ponents implemented in one of the routers of FIG. 1;

FIG. 5 is a flow diagram illustrating exemplary processing
associated with the components of FIG. 1;

FIG. 6 illustrates a portion of the network of FIG. 1 asso-
ciated with the processing of FIG. 5; and

FIG. 7 is a flow diagram illustrating exemplary processing
associated with the load balancer of FIG. 3.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

The following detailed description refers to the accompa-
nying drawings. The same reference numbers in different
drawings may identify the same or similar elements. Also, the
following detailed description does not limit the invention.

Implementations described herein relate to an architecture
that provides load balancing associated with a service, such as
an [P-related service. In one implementation, the architecture
provides an integrated control and data plane that provides a

10

15

20

25

30

35

40

45

50

55

60

65

2

number of load balancers accessible via a single virtual IP
(VIP) address. Each of the load balancers may advertise the
VIP address such that routing devices in a network are able to
forward requests from clients to an appropriate one of the load
balancers. In addition, each of the load balancers may moni-
tor a number of servers that provide the service. If one or more
of'the servers are experiencing a problem, such as an overload
or congestion condition, the load balancer may eliminate that
server from receiving client requests.

FIG. 1 is a block diagram of an exemplary network 100 in
which systems and methods described herein may be imple-
mented. Network 100 may include client device 110, routers
120, 122, 124 and 126, domain name system (DNS) 130 and
DNS 132. Network 100 may also include load balancers
140-1 and 140-2, referred to individually as load balancer 140
or 140-N and collectively as load balancers 140, server pool
150 and server pool 160. Network 100 may further include
network 170.

Client device 110 may include any type of device that is
able to transmit and receive data, such as text data, video data,
image data, audio data, multi-media data, etc. In an exem-
plary implementation, client device 110 may include some
type of computer, such as a personal computer (PC), laptop
computer, etc., a personal digital assistant (PDA), a web-
based appliance, a mobile terminal (e.g., a cellular tele-
phone), etc.

Routers 120, 122, 124 and 126 may each include any type
of network routing device, such as a router or switch, used to
receive incoming communications, identify destination infor-
mation associated with the incoming communication and
route the communication toward its intended destination.
DNS 130 and DNS 132 may each include one or more
devices/systems that translate or resolve a name associated
with a destination or service to an address (e.g., an IP
address).

Load balancers 140 may each include one or more logic
devices that receive communications and identify an appro-
priate server from a local server pool (e.g., server pool 150 or
160) to process the communications. In an exemplary imple-
mentation, load balancers 140 may identify congested servers
or unavailable servers in server pools 150 and 160 and avoid
sending communications to the congested/unavailable serv-
ers.

Server pools 150 and 160 may each include a number of
servers or other computing devices associated with servicing
customer requests. For example, server pool 150 may include
a number of servers labeled 152-1 through 152-N, where N
represents any integer. Similarly, server pool 160 may simi-
larly include a number of servers labeled 162-1 through 162-
M, where M represents any integer.

Network 170 may include one or more wired, wireless
and/or optical networks that are capable of receiving and
transmitting data, voice and/or video signals, including multi-
media signals that include voice, data and video information.
For example, network 170 may include one or more public
switched telephone networks (PSTNs) or other type of
switched network. Network 170 may also include one or
more wireless networks and may include a number of trans-
mission towers for receiving wireless signals and forwarding
the wireless signals toward the intended destinations. Net-
work 170 may further include one or more satellite networks,
one or more packet switched networks, such as an IP based
network, a local area network (LAN), a wide area network
(WAN), a personal area network (PAN) (e.g., a wireless
PAN), an intranet, the Internet, or another type of network that
is capable of transmitting data.

US 9,176,784 B2

3

The exemplary configuration illustrated in FIG. 1 is pro-
vided for simplicity. It should be understood that a typical
network may include more or fewer devices than illustrated in
FIG. 1. For example, one client device 110, four routers
120-126, two DNSs 130 and 132, two load balancers 140 and
two server pools 150 and 160 are shown for simplicity. It
should be understood that network 100 may include a large
number (e.g., hundreds or thousands) of client devices, rout-
ers, load balancers, DNSs and server pools. Network 100 may
also include additional elements, such as switches, gateways,
backend systems, etc., that aid in routing information in net-
work 100. In addition, although the various devices illustrated
in FIG. 1 are shown as separate devices in FIG. 1, in other
implementations, the functions performed by two or more of
these devices may be performed by a single device or plat-
form. In addition, in some implementations, the functions
described as being performed by a particular device may
alternatively be performed by a different device.

FIG. 2 illustrates an exemplary configuration of load bal-
ancer 140. Client device 110, routers 120-126, DNS 130 and
132, and each of the servers in server pools 150 and 160 may
be configured in a similar manner. Referring to FIG. 2, load
balancer 140 may include a bus 210, a processor 220, a
memory 230, an input device 240, an output device 250 and a
communication interface 260. Bus 210 may include a path
that permits communication among the elements of load bal-
ancer 140.

Processor 220 may include one or more processors, micro-
processors, or processing logic that may interpret and execute
instructions. Memory 230 may include a random access
memory (RAM) or another type of dynamic storage device
that may store information and instructions for execution by
processor 220. Memory 230 may also include a read only
memory (ROM) device or another type of static storage
device that may store static information and instructions for
use by processor 220. Memory 230 may further include a
solid state drive (SDD). Memory 230 may also include a
magnetic and/or optical recording medium (e.g., a hard disk)
and its corresponding drive.

Input device 240 may include a mechanism that permits a
user to input information to load balancer 140, such as a
keyboard, a keypad, a mouse, a pen, a microphone, a touch
screen, voice recognition and/or biometric mechanisms, etc.
Output device 250 may include a mechanism that outputs
information to the user, including a display, a printer, a
speaker, etc.

Communication interface 260 may include any trans-
ceiver-like mechanism that load balancer 140 may use to
communicate with other devices (e.g., router 124, router 126,
server pool 150, server pool 160, etc.). For example, commu-
nication interface 260 associated with load balancer 140-1
may include mechanisms for communicating with router 124
and each of the servers 152 in server pool 150 via wired,
wireless or optical mechanisms. Communication interface
260 may also include one or more radio frequency (RF)
transmitters, receivers and/or transceivers and one or more
antennas for transmitting and receiving RF data via network
170. Communication interface 260 may also include a
modem or an Ethernet interface to a LAN or other mecha-
nisms for communicating via a network, such as network 170
or another network via which load balancer 140 communi-
cates with other devices/systems.

The exemplary configuration illustrated in FIG. 2 is pro-
vided for simplicity. It should be understood that load bal-
ancer 140 (and routers 120-126, DNS 130 and 132 and client
device 110) may include more or fewer devices than illus-
trated in FIG. 2.

40

45

50

4

In an exemplary implementation, load balancer 140 may
perform operations in response to processor 220 executing
sequences of instructions contained in a computer-readable
medium, such as memory 230. A computer-readable medium
may be defined as a physical or logical memory device. The
software instructions may be read into memory 230 from
another computer-readable medium (e.g., a hard disk drive
(HDD), SSD, etc.), or from another device via communica-
tion interface 260. Alternatively, hard-wired circuitry may be
used in place of or in combination with software instructions
to implement processes consistent with the implementations
described herein. Thus, implementations described herein are
not limited to any specific combination of hardware circuitry
and software.

FIG. 3 is an exemplary functional block diagram of each
load balancer 140 according to an exemplary implementa-
tion. The logical blocks illustrated in FIG. 3 may be imple-
mented in software, hardware, or a combination of hardware
and software. For example, in one implementation, all or
some of the logical blocks illustrated in FIG. 3 may be imple-
mented by processor 220 (FIG. 2) executing software instruc-
tions stored in, for example, memory 230.

Referring to FIG. 3, load balancer 140 may include load
balancing logic 310, forwarding logic 320, monitoring logic
330, exception list 340 and session persistence logic 350.
Load balancing logic 310 may include logic for controlling
the operation of load balancer 140. For example, load balanc-
ing logic 310 may identify an appropriate one of servers in
server pool 150 (or server pool 160) to which communica-
tions from client devices, such as client device 110, should be
forwarded. In an exemplary implementation, load balancing
logic 310 may identify congested servers, unavailable serv-
ers, etc., and avoid sending client requests to such servers, as
described in detail below.

Forwarding logic 320 may include logic for forwarding
communications, such as client requests destined for one of
servers 152 or 162. For example, forwarding logic 320 may
forward client requests associated with access to a service in
accordance with information from load balancing logic 310.

Monitoring logic 330 may include logic for monitoring
servers 152 in server pool 150 (and/or servers 162 in server
pool 162). For example, in one implementation, monitoring
logic 330 in load balancer 140-1 may run a background dae-
mon that continuously or periodically monitors the state of
each of'servers 152 in server pool 150. Monitoring logic 330
in load balancer 140-2 may perform a similar process with
respectto servers 162 in server pool 160, as described in detail
below. Monitoring logic 330 may then determine whether a
server included in server pool 150/160 should be removed
from the pool of available servers to process client requests.

Exception list 340 may include one or more memories for
storing information identifying, for example, congested or
overloaded servers that are no longer available to process
client requests. For example, monitoring logic 330 may iden-
tify servers that are currently unavailable for processing client
requests and store information identifying the unavailable
servers in exception list 340. Load balancing logic 310 may
access exception list 340 when identifying an appropriate
server to process a client request. In an exemplary implemen-
tation, exception list 340 may be implemented using a high
speed, ternary content addressable memory (TCAM). Alter-
natively, exception list 340 may be implemented using a high
speed, static random access memory (SRAM) or via any other
memory device.

Session persistence logic 350 may store state information
associated with a client session. For example, a single session
and/or transaction associated with a client request may

US 9,176,784 B2

5

include many sub-transactions that are performed by difter-
ent ones of servers 152 and/or 162. In such instances, session
persistence logic 350 may store state information associated
with each of the sub-transactions in persistence table 352.
Persistence table 352 may include one or more memory
devices that include one or more databases that store and
index the state information. In an alternative implementation,
session persistence logic 350 and/or session persistence table
352 may be located externally with respect to load balancer
140, as described in detail below. In each case, if a problem
occurs during a transaction, one of servers 152 and/or 162
may access persistence table 352 to ensure that the transac-
tion may be completed, as described in detail below.

Load balancer 140 may receive communications from cli-
ent devices, such as client device 110, intended for a service
provider associated with servers 152/162 in server pools 150
and 160. Load balancer 140-1 may then identity an appropri-
ate one of servers 152/162 to which communications are to be
forwarded, as described in detail below.

FIG. 4 is an exemplary functional block diagram of com-
ponents implemented in router 120 of FIG. 2. Routers 122,
124 and 126 may be configured in a similar manner. Referring
to FIG. 4, router 120 may include control logic 410, routing
logic 420 and router table 430.

Control logic 410 may include logic for controlling the
operation of router 120. For example, control logic 410 may
receive communications from client devices, such as client
device 110, and forward the communication or a portion of
the communication (e.g., the header information) to routing
logic 420. Control logic 410 may also update router tables
(e.g., router table 430) based on messages received from other
routers in network 100. Control logic 410 may also generate
orupdate one or more forwarding tables (not shown in FIG. 4)
based on information in the router tables.

Routing logic 420 may include logic for identifying for-
warding information associated with received communica-
tions. For example, routing logic 420 may access one or more
router tables to identify a next hop for a received communi-
cation based on destination information (e.g., a destination I[P
address and/or port) included in a header of a received com-
munication. Routing logic 420 may also receive messages,
such as advertisement messages, including address informa-
tion associated with devices/services in network 100.

Router table 430 may include one or more memories for
storing data. For example, router table 430 may store infor-
mation associated with other routers and/or services in net-
work 100. In an exemplary implementation, control logic 410
and/or routing logic 420 may store information associated
with advertised addresses in router table 430, as described in
detail below.

FIG. 5 is a flow diagram illustrating exemplary processing
associated with network 100. In this example, assume that
load balancers 140-1 and 140-2 are associated with a service
provided by an entity via servers in server pools 150 and 160.
For example, load balancers 140-1 and 140-2 may be associ-
ated with providing videos-on-demand, televisions shows,
podcasts, music, etc., or providing some other service. Pro-
cessing may begin by configuring load balancers 140-1 and
140-2 with the same virtual IP (VIP) address (act 510). Using
a VIP address associated with multiple load balancers 140
allows DNSs 130 and 132 to store a single IP address for a
particular service provided by a service provider associated
with load balancers 140 and server pools 150 and 160. Using
a single VIP address also allows a service provider to config-
ure load balancers 140-1 and 140-2 in an identical manner,
which simplifies the configuring and maintenance associated
with load balancers 140.

10

15

20

25

30

35

40

45

50

55

60

65

6

Continuing with the example above, assume that a service
provider associated with the service provided via servers in
server pools 150 and 160 configures a service VIP address on
a loopback interface of load balancers 140-1 and 140-2 to
each have the IP address of 1.1.1.1. This VIP address may
represent the IP address for a service to be provided by one or
more servers 152 or 162 in server pool 150 or 160, respec-
tively. It should be understood that the VIP address of 1.1.1.1
is used for explanatory purposes and any particular VIP
address may be assigned to load balancers 140.

Further assume that the physical interface that connects
load balancer 140-1 to its closest router (i.e., router 124 in this
example), has been assigned the network IP address of
192.168.1.2. Also assume that the physical interface that con-
nects load balancer 140-2 to its closest router (i.e., router 126
in this example) has been assigned the network IP address of
172.1.1.2. In this example, load balancer 140-1 may advertise
the VIP address 1.1.1.1/32 to network 170 and load balancer
140-2 may advertise the VIP address of 1.1.1.1/32 to network
170 (act 520). For example, load balancers 140-1 and 140-2
may advertise the VIP address via interior gateway protocol
(IGP) route updates that are periodically transmitted to net-
work 170.

Routers in network 170 may receive the advertisements
(act 530). For example, router 124 may receive the advertise-
ment from load balancer 140-1 and router 126 may receive
the advertisement from load balancer 140-2. Routers 124 and
126 may forward the advertised VIP address to other routers
in network 170. For example, routers 124 and 126 may for-
ward the VIP address of 1.1.1.1/32 to router 120.

For example, FIG. 6 illustrates a portion of network 100
associated with the advertising messages forwarded to router
120. Referring to FIG. 6, router 124 may forward the VIP
address of'1.1.1.1/32 via 192.168.1.2, as indicated by the line
from router 124 to router 120. Similarly, router 126 may
forward the VIP address of 1.1.1.1/32 via 172.1.1.2, as indi-
cated by the line from router 126 to router 120. Router 120
may store the information associated with the VIP advertise-
ments in router table 430 (act 530).

For example, FIG. 6 illustrates an exemplary portion of
router table 430. As illustrated, routing table 430 may include
anetwork address field, anexthop field and a metric field. The
metric field illustrated in router table 430 may store the num-
ber of hops to a particular router. For example, router 124 may
have an address of 192.168.1.1 and may be located one hop
away from router 120, while router 126 may have a network
address of 172.1.1.1 and may be located two hops away from
router 120. In some implementations, control logic 410 may
access a forwarding table that includes more detailed infor-
mation with respect to routing a client request to one of load
balancers 140.

Router 120 may receive requests from client devices, such
as client device 110, and use information in its routing table
430 to automatically forward and/or load balance requests
from client devices to service VIP address 1.1.1.1 based on
various metrics (act 540). As an example, assume that the user
at client device 110 enters a name associated with the service
provided by load balancers 140 and server pools 150/160 into
aweb browser at client device 110 and forwards the request to
router 120. Router 120 may access DNS 130 (FIG. 1) to
identify an IP address associated with the name of the service.
As described above, DNS 130 (and DNS 132) may store the
VIP address of 1.1.1.1 as the IP address corresponding to the
name of the service associated with load balancers 140. In this
case, the VIP address of 1.1.1.1 may be returned to router 120.

In this example, assume that router 120 is operating in
accordance with open shortest path first (OSPF) routing pro-

US 9,176,784 B2

7

tocol. Routing logic 420 may then access router table 430 and
determine that the IP address of 1.1.1.1 may be located one
hop away via router 124 and two hops away via router 126. In
this example, routing logic 420 may select router 124 as the
next hop router. In other implementations, router 120 may use
different routing metrics/criteria when identifying a path for
forwarding client requests to one of load balancers 140-1 or
140-2.

For example, load balancer 140-1 may alter the weighting
associated with routing requests from router 120, based on,
for example, link cost information associated with forward-
ing the request, load and/or latency information associated
with servers 152 and/or 162, server availability information
associated with servers 152 and/or 162, or other information.
In such implementations, load balancer 140-1 may incorpo-
rate these other metrics in the advertisement message that will
be received by router 120. As one example, if none of the
servers 152 in server pool 150 is available or all of servers 152
are experiencing significant latency problems, load balancer
140-1 may insert latency information indicating that requests
to load balancer 140-1 will experience delays. In such an
instance, router 120 may use this latency metric and forward
requests destined for VIP address 1.1.1.1 to router 126 and
eventually load balancer 140-2, even though router 126 is
located further from router 120 than router 124. In this man-
ner, router 120 may effectively participate in the load balanc-
ing with respect to forwarding client requests to one of load
balancers 140-1 or 140-2.

In this example, assume that router 120 routes the request
from client device 110 to load balancer 140-1 via router 124.
Load balancer 140-1 may then select the appropriate server in
server pool 150 to process the client request (act 550). For
example, load balancer 140 may perform a load balancing
function to identify one of servers 152 to service the client
request, as described in detail below.

FIG. 7 illustrates exemplary processing associated with
selecting the appropriate server discussed above with respect
to act 550. Processing may begin with load balancer 140-1
monitoring servers in server pool 150 (act 710). For example,
as described above, monitoring logic 330 may run a back-
ground daemon that monitors the state of each of the servers
152-1 through 152-N in server pool 150. In one implementa-
tion, the daemon may perform periodic health checks to
determine the state of servers 152.

For example, monitoring logic 330 may generate requests
that may be similar to actual client requests and forward the
requests to each of servers 152-1 through 152-N in server
pool 150. Monitoring logic 330 may then record response
times, delays or other measurements associated with
responses to each of the requests from each of servers 152-1
through 152-N. Monitoring logic 330 may then determine
whether any of servers 152 should be added to exception list
340 as being unavailable for processing client requests (act
720). For example, if monitoring logic 330 determines that
the delay associated with server 152-2 processing a client
request is above a predetermined threshold, monitoring logic
330 may add server 152-2 to exceptions list 340. As discussed
above, a server 152 identified in exception list 340 may be
unavailable to process client requests.

Alternatively, if monitoring logic 330 determines that a
server 152 stored in exception list 340 has recovered (e.g., the
latency associated with processing a client request is now
below the predetermined threshold), monitoring logic 330
may remove that server 152 from exceptions list 340 (act
730). In some implementations, monitoring logic 330 may
also monitor the availability of the VIP address (e.g., 1.1.1.1
in this example) and load balancer 140 may withdraw the

10

15

20

25

30

35

40

45

50

55

60

65

8
advertisement of the VIP address if the VIP address (e.g.,
1.1.1.1) itself is not available. In still other implementations,
if monitoring logic 330 determines that all servers 152 in
server pool 150 are not performing satisfactorily, load bal-
ancer 140 may withdraw the advertisement associated with
VIP address 1.1.1.1.

Assume that client device 110 requests a service associated
with the VIP address (i.e., 1.1.1.1) corresponding to load
balancer 140-1 via router 120, as described above with
respect to FIG. 5. Load balancing logic 310 may identify one
of servers 152-1 through 152-N in server pool 150 to receive
the request (act 740). For example, load balancing logic 310
may perform a hash function to identify a target server in
server pool 150. In one implementation, load balancing logic
310 may perform a hash of the source IP address, destination
IP address, source port and destination port associated with
the client request. Alternatively, load balancing logic 310 may
perform a hash function based on a subset (e.g., two or more)
of'the source IP address, destination IP address, source port or
destination port. In still other alternatives, load balancing
logic 310 may hash on other information associated with the
client request. In each case, the output of the hash function
may then be mapped to one of servers 152-1 through 152-N.

After computing the hash function, load balancing logic
310 may access exception list 340 to determine whether the
identified server is in exception list 340 (act 750). If the
identified server is not in exception list 340 (act 750—no), the
request from client device 110 may be forwarded to the target
server (act 760). The target server 152 may then respond to the
client request (e.g., provide the desired service, information,
etc.).

If, however, the target server 152 is in exception list 340
(act 750—yes), this may mean that the target server 152
cannot handle client requests. In this case, load balancing
logic 310 may compute another hash function to find another
target server 152 in server pool 150 (act 770). For example,
load balancing logic 310 may compute a hash value based on
information other than that used in the first hash function.
Alternatively, load balancing logic 310 may identify the next
sequential server in server pool 150. For example, if the initial
hash function output is mapped to target server 152-3 and
server 152-3 is identified in exception list 340, monitoring
logic 310 may identify server 152-4 as the target server. If
server 152-4 is in exception list 340, load balancing logic 310
may continue to attempt to identify an available server by
either executing a different hash function or selecting another
one of the available servers not in exception list 340. Once an
available server is identified, the client request may be for-
warded to the identified target server 152 (act 760). The target
server may then respond to the client request (e.g., provide the
desired service, information, etc.).

In an exemplary implementation, load balancer 140-1 may
not require the load to be balanced across each of servers
152-1 through 152-N. For example, in some implementa-
tions, results of the hashing function that identify a target
server may result in one of servers 152 receiving more
requests than another one of servers 152. In such an imple-
mentation, as long as the server 152 processing the most
client requests is not overloaded, no additional load balancing
may be needed. As an example, servers 152-1, 152-2 and
152-3 may be handling 10%, 20% and 70%, respectively, of
client requests. As long as monitoring logic 310 determines
that server 152-3 is not overloaded or congested, no addi-
tional load balancing between servers 152 is required. This
may save additional time with respect to processing client

US 9,176,784 B2

9

requests as compared to load balancing in an environment
where each server 152 must handle approximately the same
load.

As discussed above, server pools 150 and 160 may each
include a number of different servers. In some implementa-
tions, a client session may be made of many sub-transactions
that span several different servers 152 and/or 162. In such a
case, load balancer 140 may implement session persistence
functionality. For example, session persistence logic 350
(FIG. 3) may store state information associated with a session
in persistence table 352.

In one implementation, session persistence logic 350 may
receive state information from each of servers 152 and 162
that may be performing processing associated with a client
session. For example, load balancers 140 and servers 152/162
may share information using a protocol that allows state
information to be forwarded from servers 152/162 to load
balancers 140. In such an implementation, load balancers
140-1 and 140-2 may receive and/or request state information
from servers 152/162. Session persistence logic 350 may
store the state information in persistence table 352, which
may be globally accessible to each of servers 152 and/or 162.
In this manner, each of servers 152 and/or 162 may access
state information stored in persistence table 352 to retrieve
information associated with a client session.

In another implementation, each of servers 152 and 162
may store state information in a globally accessible memory
that is not contained within load balancer 140. For example,
persistence table 352 may be located within server pool 150
and/or 160. In this case, each of servers 152 and/or 162 may
update persistence table 352 with state information regarding
a client session in progress.

Storing state information may be important if one of serv-
ers 152 and/or 162 fails during processing. For example, if a
client session is associated with performing a banking trans-
action, several of servers 152 may be involved in the client
session/processing. If one of the servers 152 involved in the
transaction experiences some problem, another one of servers
152 may access persistence table 352 to retrieve state infor-
mation associated with a portion of the transaction. This may
enable server pools 150 and 160 to avoid losing information
associated with a transaction that is in progress.

Implementations described herein provide for load balanc-
ing processing associated with a service over a number of
server or computer devices. This may allow for efficient uti-
lization of resources associated with providing services to
client or customers, while also minimizing delays with
respect to providing the service. In addition, the load balanc-
ing architecture described herein is easily scalable to support
any type of service that may receive large numbers of client
requests.

The foregoing description of exemplary implementations
provides illustration and description, but is not intended to be
exhaustive or to limit the embodiments to the precise form
disclosed. Modifications and variations are possible in light
of'the above teachings or may be acquired from practice of the
embodiments.

For example, in the implementations described above, one
or more load balancers 140 and server pools 150/160 were
described as being associated with a service provider provid-
ing a particular service (e.g., IP-based service). In some
implementations, load balancers 140 may be operated and/or
provided by an entity that is distinct from the entity providing
the service. For example, an entity associated with managing
resources for a service provider may operate load balancers
140 on behalf of the entity associated with the server pools
(e.g., server pools 150 and 160).

20

25

30

40

45

10

In addition, features have been described above with
respect to load balancers 140 performing a number of func-
tions associated with processing client requests. In some
implementations, some or all of the processing performed by
load balancers 140 may be performed in hardware at near
wire speeds, as opposed to being performed in software,
which may cause additional latency. In each case, the load
balancing may be performed in a single layer/platform that
enables client requests to be efficiently processed.

In addition, while series of acts have been described with
respect to FIGS. 5 and 7, the order of the acts may be varied
in other implementations. Moreover, non-dependent acts may
be implemented in parallel.

It will be apparent that various features described above
may be implemented in many different forms of software,
firmware, and hardware in the implementations illustrated in
the figures. The actual software code or specialized control
hardware used to implement the various features is not lim-
iting. Thus, the operation and behavior of the features were
described without reference to the specific software code—it
being understood that one of ordinary skill in the art would be
able to design software and control hardware to implement
the various features based on the description herein.

Further, certain portions of the invention may be imple-
mented as “logic” that performs one or more functions. This
logic may include hardware, such as one or more processors,
microprocessor, application specific integrated circuits, field
programmable gate arrays or other processing logic, soft-
ware, or a combination of hardware and software.

In the preceding specification, various preferred embodi-
ments have been described with reference to the accompany-
ing drawings. It will, however, be evident that various modi-
fications and changes may be made thereto, and additional
embodiments may be implemented, without departing from
the broader scope of the invention as set forth in the claims
that follow. The specification and drawings are accordingly to
be regarded in an illustrative rather than restrictive sense.

No element, act, or instruction used in the description of the
present application should be construed as critical or essential
to the invention unless explicitly described as such. Also, as
used herein, the article “a” is intended to include one or more
items. Further, the phrase “based on” is intended to mean
“based, at least in part, on” unless explicitly stated otherwise.

What is claimed is:

1. A system, comprising:

a plurality of load balancers configured to receive requests
associated with a first service, each of the plurality of
load balancers having a same virtual Internet protocol
(VIP) address, wherein each of the plurality of load
balancers comprises:

a memory, and
logic configured to:
advertise the VIP address via an interior gateway pro-
tocol,
monitor a plurality of computer devices, wherein each
of'the plurality of computer devices is configured to
provide the first service,
identify, based on the monitoring, whether any of the
plurality of computer devices is experiencing a
problem or is unavailable to provide the first ser-
vice,
store, in the memory, information identitying each of
the plurality of computer devices that is experienc-
ing a problem or is unavailable to provide the first
service,

US 9,176,784 B2

11

receive a client request for the first service,
identify one of the plurality of computer devices to
which the request is to be forwarded, and
forward the request to the identified computer device,
wherein when advertising the VIP address, the logic is
configured to:
insert a metric into an advertisement, the metric com-
prising latency information associated with the plu-
rality of computer devices being monitored by the
logic.

2. The system of claim 1, wherein when identifying one of
the plurality of computer devices, the logic is further config-
ured to:

perform a hash function to identify a first one of the com-

puter devices.

3. The system of claim 2, wherein when identifying one of
the plurality of computer devices, the logic is further config-
ured to:

access the memory to determine whether information iden-

tifying the first computer device is stored in the memory,
and

select, when information identifying the first computer

device is stored in the memory, another one of the com-
puter devices.

4. The system of claim 3, wherein when selecting another
one of the computer devices, the logic is configured to:

perform a second hash function to identify a second one of

the computer devices or select a second one of the com-
puter devices based on the first computer device.

5. The system of claim 1, wherein

the metric further comprises at least one of link cost or

availability information associated with at least some of
the plurality of computer devices.

6. The system of claim 1, wherein when monitoring the
plurality of computer devices, the logic is configured to:

transmit requests to each of the computer devices,

measure response times associated with each of the
requests from each of the computer devices, and

determine whether any of the computer devices is experi-
encing a problem or is unavailable based on the response
times.

7. The system of claim 6, wherein the memory is config-
ured to store information identifying a first one of the com-
puter devices, and wherein the logic is further configured to:

remove information identifying the first computer device

from the memory if the response time from the first
computer device is less than a threshold value.

8. The system of claim 7, wherein the logic is further
configured to:

continuously update the memory based on the monitoring.

9. A method, comprising:

configuring a plurality of load balancers with a same vir-

tual Internet protocol (VIP) address, the VIP address
being associated with a first service;

advertising, by each of the load balancers, the VIP address;

monitoring, by each of the plurality of load balancers, a

plurality of computer devices, wherein each of the plu-
rality of computer devices is configured to provide the
first service;

identifying, based on the monitoring, whether any of the

computer devices is unavailable for processing client
requests associated with the first service;

storing, in a memory, information identifying each of the

plurality of computer devices unavailable for processing
client requests;

receiving, at a first one of the load balancers, a client

request for the service;

10

20

30

40

45

50

65

12

identifying, by the first load balancer, one of the plurality of
computer devices to which the request is to be for-
warded; and
forwarding the client request to the identified computer
device,
wherein advertising the VIP address comprises:
including a metric in an advertisement message, the
metric comprising at least one of latency or load infor-
mation associated with providing the first service by
the load balancer advertising the VIP address,
wherein a router receiving the client request uses the
metric to identify the first load balancer.
10. The method of claim 9, wherein
the metric further comprises at least one of link cost or
availability information.
11. The method of claim 9, wherein the identifying one of
the computer devices comprises:
performing a hash function based on at least two of a source
address, a destination address, a source port or a desti-
nation port associated with the client request.
12. The method of claim 11, wherein identifying one of the
computer devices further comprises:
identifying a first computer device,
determining whether information identifying the first com-
puter device is stored in the memory, and
selecting, when information identifying the first computer
device is stored in the memory, another one of the com-
puter devices.
13. The method of claim 12, wherein selecting another one
of the computer devices comprises:
performing a second hash function to identify a second one
of the computer devices or selecting a second one of the
computer devices numbered sequentially with respect to
the first computer device.
14. The method of claim 9, wherein monitoring the plural-
ity of computer devices comprises:
transmitting requests to each of the computer devices,
measuring response times associated with each of the
requests, and
determining whether each of the computer devices is expe-
riencing a problem or is unavailable based on the
response times.
15. The method of claim 14, further comprising:
continuously updating the memory based on the monitor-
ing.
16. A device, comprising
a memory; and
logic configured to:
monitor a plurality of computer devices associated with
a first service, wherein each of the plurality of com-
puter devices is configured to provide the first service
and each of the computer devices has a same virtual
Internet protocol (VIP) address,
advertise the VIP address via an interior gateway proto-
col,
identify, based on the monitoring, whether any of the
plurality of computer devices is experiencing a prob-
lem or is unavailable to provide the first service,
store, in the memory, information identifying each ofthe
plurality of computer devices that is experiencing a
problem or is unavailable to provide the first service,
receive a client request for the first service, the client
request being directed to the VIP address associated
with the device,
identify one of the plurality of computer devices to
which the request is to be forwarded, and
forward the request to the identified computer device,

US 9,176,784 B2

13

wherein when advertising the VIP address, the logic is
configured to:
include a metric in an advertisement message, the metric
comprising at least one of latency information or load
information, wherein a router receiving the client
request uses the metric to identify the device.

17. The device of claim 16, wherein when identifying one
of' the plurality of computer devices, the logic is further con-
figured to:

perform a hash function to identify a first one of the com-

puter devices,

access the memory to determine whether information iden-

tifying the first computer device is stored in the memory,
and

select, when information identifying the first computer

device is stored in the memory, another one of the com-
puter devices.

w

14

18. The device of claim 16, wherein
the metric further comprises at least one of link cost or
availability information.
19. The device of claim 16, wherein when monitoring the
plurality of computer devices, the logic is configured to:
transmit requests to each of the computer devices,
measure response times associated with each of the
requests from each of the computer devices, and
determine whether any of the computer devices is experi-
encing a problem or is unavailable based on the response
times.
20. The device of claim 16, wherein when identifying one
of the computer devices, the logic is configured to:
perform a hash function based on at least two of a source
address, a destination address, a source port or a desti-
nation port associated with the client request.

#* #* #* #* #*

